

Faculty Of Engineering and Technology Electrical And Computer Engineering Department

Signals \& Systems
ENEE 2302

MATLAB Assignment

Student's Name: Alaa Zuhd

Student's ID : 1180865

Instructor Name : Dr.Ashraf Al-Rimawi

Section : 1
Date : 6-6-2020

Table of contents

1- Question 1 -3
2- Question 2 -5
3- Question 3 -6
4- Appendix -8

- Program for Question 1 8
- Program for Question 2 -9
- Program for Question 3 10

Question 1

Generate and plot the following signals using MATLAP :

1- $X 1(t)=u(t-2)-u(t-9)$
2- $\operatorname{Pi}(t)$ with value 8 and extension fron 6 to 14
3- $X 2(t)=u(t-4)+r(t-4)-2 r(t-7)+r(t-13)$ in t interval $[016]$

Fig 1.1 (plot of the above three signals $\mathrm{X} 1(\mathrm{t}), \mathrm{Pi}(\mathrm{t})$, and $\mathrm{X} 2(\mathrm{~T})$)

Discussion :

- Plot 1: $u(t)=1: t>2,0$ otherwise, and $u(t-9)=1: t>9,0$ otherwise, so $\mathrm{u}(\mathrm{t}-2)-\mathrm{u}(\mathrm{t}-9)$ will be $1: \mathrm{t} €[2,9], 0$ otherwise, and this identically for the generated plot (plot 1), which mean the plot is correct.
- Plot 2: $\operatorname{Pi}(\mathrm{t})$ with value $=8$ and extension from 6 to 14 , means that the signal have a magnitude $=8$ in the interval [6 14], and 0 otherwise, and this
is identical to the generated signal in (plot 2), which means the code used to plot this signal is correct .
- Plot 3: By analyzing the signal X2(t) we notes that it was the same as the generated signal in (plot 3), which means the code used to describe and plot this signal is correct .

Q1)
1- Plot $x_{1}(t)=\mu(t-2)-\mu(t-a)$

2-plot $P_{i}(t)$ with value 8 and extension from 6 to 14
$\overline{\overline{8} \pi}\left(\frac{t-10}{4}\right)$

3-plot $x_{2}(t)=\mu(t-4)+r(t-4)-2 r(t-7)+r(t-13)$

$$
\text { for } t \in\left[\begin{array}{ll}
0 & 16
\end{array}\right]
$$

The solution of the first question and it's identical to the generated plots using MATLAB

Question 2

> Write a program that computes and plots the convolution of the functions

- $X(t)=\left(10 e^{-0.5 t}\right) * \operatorname{Pi}\left(\frac{t-7}{4}\right)$
- $Y(t)=\left(10 t e^{-0.5 t}\right) * P i\left(\frac{t-12}{8}\right)$

The Computed result from the command window is :
con_ans =
$50 *$ heaviside $(\mathrm{t}-21) * \exp (-\mathrm{t} / 2) *\left(-\mathrm{t}^{\wedge} 2+10 * \mathrm{t}+231\right)-50 *$ heaviside $(\mathrm{t}-25) * \exp (-\mathrm{t} / 2)^{*}\left(-\mathrm{t}^{\wedge} 2+18 * \mathrm{t}\right.$ $+175)-50 *$ heaviside $(\mathrm{t}-13) * \exp (-\mathrm{t} / 2)^{*}\left(-\mathrm{t}^{\wedge} 2+10^{*} \mathrm{t}+39\right)-50 *$ heaviside $(\mathrm{t}-17) * \exp (-\mathrm{t} / 2)^{*}\left(\mathrm{t}^{\wedge} 2-\right.$ $18 * \mathrm{t}+17$)

Fig 2.1 plot of the convolution of the two functions

Discussion :

The result of the generated plot was as expected to be when calculating it manually.

Question 3

Generate and plot the following signals :
1- $y 1(t)=\sin (300 * p i * t)$
2- $y 2(t)=\cos (800 * p i * t)$
3- $m(t)=y 1(\mathrm{t})+y 2(t)$
4- $n(t)=y 1(t)-y 2(t)$

Fig 3.1 (Plot of the above four signals $\mathrm{y} 1(\mathrm{t}), \mathrm{y} 2(\mathrm{t}), \mathrm{m}(\mathrm{t})$, and $\mathrm{n}(\mathrm{t})$).

Discussion :

- Plot1 : plot 1 was as expected to be (it's simply the sin function), such that I have take 3 period of this signals since the largest value for t was $3 / 150$.
- Plot2 : plot 2 was as expected to be (it's simply the cosine function), such that I have taken 8 period of this signal since the largest chosen value for t was $3 / 150$.
- Plot3 : plot 3 also was as expected to be .
- Plot4 : Plot 4 was as expected to be .
> Determine, using the MATLAB plots, if the generated signals are periodic and if a signal is periodic then determine it's fundamental frequency .

By looking into Fig3.1 it can be seen easily that the four generated signals are periodic, such that the fundamental frequency for every signal is :

1- $y 1(t)=\sin (300 * p i * t) \rightarrow$ omega1 $=300 * \mathrm{pi} \rightarrow \mathrm{f} 0=\mathrm{f} 1=$ $(300 * \mathrm{pi}) /(2 * \mathrm{pi})=150 \mathrm{~Hz}$.
2- $y 2(t)=\cos (800 * p i * t) \rightarrow$ omega2 $=800^{*} \mathrm{pi} \rightarrow \mathrm{f} 0=\mathrm{f} 2=$ $\left(800^{*} \mathrm{pi}\right) /\left(2^{*} \mathrm{pi}\right)=400 \mathrm{~Hz}$.
3- $m(t)=y 1(\mathrm{t})+y 2(t)$ and $n(t)=y 1(t)-y 2(t) \rightarrow \mathrm{f} 0=\mathrm{GCD}(\mathrm{f} 1, \mathrm{f} 2)=$ 50 Hz , the same as the one noticed from the plots such that the fundamental period was 0.02 sec and hence the fundamental frequency is $1 / 0.02=50 \mathrm{~Hz}(\mathrm{f} 0=1 / \mathrm{t} 0)$.

* Appendix A

> Program For Question 1

```
2 %Question 1
3- syms t x1 Pi x2;
4
5 %first signal
6- xl = heaviside(t-2) - heaviside(t-9);
7- subplot (2,2,1);
8- fplot(x1);
9- xlabel('t axis');
10- ylabel('x1 axis');
11- title('1-x1(t) = u(t-2) - u(t-9)');
12- axis([-1 111 -1 2]);
13
14 %second signal
15- Pi = 8.*rectangularPulse (6,14,t);
16- subplot(2,2,2);
17- fplot(Pi);
18 - xlabel('t axis');
19- ylabel('Pi(t)');
20- title('2- Pi(t)');
21- axis([0 20 -1 10]);
22
23 % third signal
24 - x2 = heaviside(t-4) + (t-4)*heaviside(t-4) - 2.*(t-7)*heaviside(t-7) + (t-13)*heaviside(t-13);
25- subplot (2,2,[3 4]);
26- fplot(x2);
27- axis([0 16 -4 6]);
28- xlabel('t axis');
29- ylabel('x2 axis');
30- title('3- x2(t) =u(t-4) +r(t-4) - 2r(t-7) +r(t-13)');
```

Fig 1.2 (Program for Q1)

Program for Question 2

```
|1
3
4- syms t toe x y con_ans ;
5
6- x = 10 * exp( -0.5 * toe ) * rectangularPulse(5,9, toe);
7
8- y = 10 * (t-toe) * exp( -0.5 * (t-toe) ) * rectangularPulse(8,16,t-toe) ;
9
10- con_ans = int(x*y,toe,-inf,inf)
12- fplot(con_ans);
13- xlabel('t axis');
14- ylabel('Con-ans axis');
15- title('Convolution of 10e^(^-^0^.^5^t^)*Pi((t-7)/4) and 10te^(^-^0^.^5^t^)*pi((t-12)/8)');
16- axis([0 40 -1 2]);
```

Fig 2.2 (program for Q2) .

Program for Question 3

```
1 % Question 3 program
2 - syms t y1 y2 m n ;
3
4 %first signal
5- y1 = sin(300*pi*t) ;
6- subplot(2,2,1);
7 - fplot(y1);
8- xlabel('t values');
9- ylabel('y1 values');
10- title('1- y1(t) = sin(300*pi*t)');
11- axis([0 (3/150) -1 1]);
12
13 %second signal
14- y2 = cos(800*pi*t);
15 - subplot(2,2,2);
16- fplot(y2);
17 - xlabel('t values');
18 - ylabel('y2 values');
19- title('2- y2(t) = cos(800*pi*t)');
20- axis([0 (3/150) -1 1]);
21
22 %third signal
23- m = y1 + y2 ;
24- subplot (2,2,3);
25 - fplot(m);
26- xlabel('t values');
27- ylabel('m values');
28- title('3-m(t) = v1(t) + v2(t)');
29- axis([0 (6/150) -2 2]); % the range for the horizontal and vertical axis
30
31 %fourth signal
32- n = y1 - y2 ;
33- subplot(2,2,4); % to put the figure in the right-down corner
34- fplot(n);
35- xlabel('t values');
36- ylabel('n values');
37- title('4- n(t) = y1(t) - y2(t)');
38- axis([0 (6/150) -2 2]); % the range for the horizontal and vertical axis
```

Fig 3.2 (program for Q3).

